TRIF Differentially Regulates Hepatic Steatosis and Inflammation/Fibrosis in Mice
نویسندگان
چکیده
BACKGROUND & AIMS Toll-like receptor 4 (TLR4) signaling is activated through 2 adaptor proteins: MyD88 and TIR-domain containing adaptor-inducing interferon-β (TRIF). TLR4 and MyD88 are crucial in nonalcoholic steatohepatitis (NASH) and fibrosis. However, the role of TRIF in TLR4-mediated NASH and fibrosis has been elusive. This study investigated the differential roles of TRIF in hepatic steatosis and inflammation/fibrosis. METHODS A choline-deficient amino acid defined (CDAA) diet was used for the mouse NASH model. On this diet, the mice develop hepatic steatosis, inflammation, and fibrosis. TLR4 wild-type and TLR4-/- bone marrow chimeric mice and TRIF-/- mice were fed CDAA or a control diet for 22 weeks. Hepatic steatosis, inflammation, and fibrosis were examined. RESULTS In the CDAA diet-induced NASH, the mice with wild-type bone marrow had higher alanine aminotransferase and hepatic tumor necrosis factor levels than the mice with TLR4-/- bone marrow. The nonalcoholic fatty liver disease activity score showed that both wild-type and TLR4-/- bone marrow chimeras had reduced hepatic steatosis, and that both types of chimeras had similar levels of inflammation and hepatocyte ballooning to whole-body wild-type mice. Notably, wild-type recipients showed more liver fibrosis than TLR4-/- recipients. Although TRIF-/- mice showed reduced hepatic steatosis, these mice showed more liver injury, inflammation, and fibrosis than wild-type mice. TRIF-/- stellate cells and hepatocytes produced more C-X-C motif chemokine ligand 1 (CXCL1) and C-C motif chemokine ligand than wild-type cells in response to lipopolysaccharide. Consistently, TRIF-/- mice showed increased CXCL1 and CCL3 expression along with neutrophil and macrophage infiltration, which promotes liver inflammation and injury. CONCLUSIONS In TLR4-mediated NASH, different liver cells have distinct roles in hepatic steatosis, inflammation, and fibrosis. TRIF promotes hepatic steatosis but it inhibits injury, inflammation, and fibrosis.
منابع مشابه
TRIF as a Novel Modulator of Liver Inflammation and Fibrosis
he central role of toll-like receptor 4 (TLR4) actiTvation in nonalcoholic steatohepatitis (NASH) has been well-recognized, specifically its role in the activation of innate immune responses, hepatocyte apoptosis, and fibrosis. TLR4 could be activated by various signals; in the context of NASH dysregulation of gut microbial homeostasis, gut leakiness and consequent increase in bacteria-derived ...
متن کاملPrevalence of hepatic steatosis and associated factors in Iranian patients with chronic hepatitis C
Background: Hepatic steatosis is commonly observed in patients with chronic hepatitis C (CHC). Many studies indicate a relationship between steatosis and fibrosis progression. The aim of this study was to analyze the prevalence of hepatic steatosis and related factors in Iranian CHC patients. Methods: One hundred and fifteen consecutive patients with CHC were enrolled which were treat...
متن کاملThe LXR inverse agonist SR9238 suppresses fibrosis in a model of non-alcoholic steatohepatitis
OBJECTIVE Non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, inflammation and fibrosis. There are currently no targeted therapies for NASH. We developed a liver-specific LXR inverse agonist, SR9238, which effectively reduces hepatic lipogenesis in models of obesity and hepatic steatosis. We hypothesized that suppression of lipogenesis, which is pathologically elevated i...
متن کاملConophylline inhibits non-alcoholic steatohepatitis in mice
Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Ervatamia microphylla, attenuates hepatic fibrosis in mice. However, little is known about whether CnP inhibits steatosis, inflammation, and fibrosis in non-alcoholic steatohepatitis (NASH) in mice. A methionine-choline-deficient (MCD) diet was administered to male db/db mice as a NASH model, and CnP (1 μg/kg/d...
متن کاملSeven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation and fibrosis, which might progress to cirrhosis. Human NASH is associated with metabolic syndrome (MS). Currently, rodent NASH models either lack significant fibrosis or MS. ApoE(-/-) mice are a MS model used in cardiovascular research. The aim of this work was to establish and characterise a novel mouse NA...
متن کامل